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N U M E R I C A L  S I M U L A T I O N  OF M I C R O C O N V E C T I O N  

IN D O M A I N S  W I T H  F R E E  B O U N D A R I E S  

O. N. Goncharova UDC 532.517.013.4:563.252 

1. I n t r o d u c t i o n .  The Oberbeck-Boussinesq system of equations is usually used to describe free 
gravitational or thermocapillary convection. Analyzing the assumptions made in the derivation of this system 
from the exact equations of continuum mechanics, V. V. Pukhnachev [1] have shown that the classical model 
cannot be applied to convection in small domains and in weak gravity or fast-varying temperature fields. In 
[2], Perera and Sekerka have noted the interest in new models of convection and a need for replacement of 
the conventional model for microconvection in fluids. In [3, 4], the author investigated numerically fluid flows 
in domains with fixed boundaries under the action of microaccelerations attainable aboard a space vehicle 
with the use of the classical model of convection and the new model of Pukhnachev. The qualitative and 
quantitative differences in the flow characteristics were verified. In the new model of microconvection, the 
equations of conservation of mass and momentum are satisfied exactly, and the equation of energy is satisfied 
asymptotically. When the specific volume 1/p depends linearly on the temperature, the initial system of 
equations is transformed into a system in which the modified velocity vector becomes solenoidal. This makes 
it possible to introduce a stream function for plane and axially symmetric problems and to calculate convective 
flows in stream function-vorticity variables. 

In the present paper, the steady two-dimensional thermocapiUary gravitational convection in annular 
domains with free boundaries is investigated numerically. The free boundaries can then be considered rigid 
and approximately defined as the surfaces of capillary equilibrium under conditions of zero gravity and with 
a rather small parameter responsible for deformation of the free surfaces by thermocapillary forces (capillary 
number). The free boundaries are corrected by their dynamic conditions. Calculations were carried out by the 
method tested in the above-mentioned studies of free convection and microconvection in fixed domains. 

2. Fo rmula t ion  of t h e  P r o b l e m .  The steady gravitational capillary convection is investigated in the 
annular domain 0 < R1 ~< r ~< R2 < +co, 0 ~< ~ ~< 2a" for two cases: 

(1) for I = 0, we have heat transfer through the fixed inner boundary (r = Ri) and heat insulation of 
the free outer boundary (r = R2); 

(2) for I -- 1, we have heat transfer through the fixed outer boundary (r -- R2) and heat insulation of 
the free inner boundary (r -- R1). 

The equations of convection are considered here in nondimensional form. In this case, the following 
characteristic size, velocity, temperature, and pressure are introduced: 1 = Ro - R1, ~[To/p, To, and 7To~l, 
where 7 is the temperature coefficient of surface tension, To is the characteristic temperature difference, and 
# is the dynamic viscosity (see, for example, [5]). 

�9 Classical Oberbeck-Boussinesq Model (OBM). The stream function g,, the vorticity w, and the 
temperature T in the polar coordinates (r, 0) satisfy the following system: 

A w - a e  v~7 `+ - r  -Maa~,O-'~r c~ rO- -~s ' n~ )=0 ;  (2.1) 

A,p + w = 0; (2.2) 

AT - M a v  + - = 0. (2.3) 
7" 
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Here Re = 17To/#u, Ma = Re Pr, Pr = u/X , and Gr = g3Tol3/uX are the Reynolds, Marangoni, Prandtl. 
and Grashof numbers, respectively; u is the kinematic viscosity, )~ is the thermal conductivity, 9 is the 
acceleration of gravity, /3 is the volume coefficient of thermal expansion, 3To = Gr /Pu  (Pu = 9lJ/u~ is 
the Pukhnachev number), u = r-lO~b/O~ is the radial velocity component; and v = -Og2/Or is the tangential 
velocity component. 

The boundary conditions are as follows: 
for I = 0  

O~ OT 
r = R I :  ~b=O, Or O, Or 

r = R2: r  R2w + 2 o~p = - -  
Or 

and for I = 1 

r = R l :  q; = O, Rlw + 2 0d2 

r = R2: r = 0 ,  

= H cos~o (H = const), 

OT OT 
0~o' Or = O, 

�9 New Model (NM). For the functions 
are as follows: 

( O W  U O~) ( 1 0 T O q  1 0 T O q  [OT( u )  
(1 + ~ToT)Aw - Re v~-~r + - + ~To - - - -  

r r 0 ~ o O r  r Or 0~o + ~ A u -  

Gr (OT 1 0 T  ) 3To~wAT OTOw l OT Ow) 
~ a k ~ . r C O S ~ O _ _ w s i n ~  o _ + w n  + r I. Or Or r2 

MaPr Or Ocp + 0~o Or ] J  = 0; 

A r  + t o  = 0; 

( (1 + J3ToT)AT - Ma v-~-~r + -r O~oJ - ~To]VTI 2 = O. 

Here r is a modified s tream function [1]. For the new model, the boundary conditions are as follows: 
for I =  0 

and for I = 1 

OT OT 
0~ ' Or = O, 

O~b OT 
Or O, Or H cos 9. 

r  w, and T, the nondimensional equations in polar coordinates 

~To H 0r 1 [3To OT OT 
r = RI: r = - R 1 - - - ~ a  sinqo, 0-'~ = Rx Ma 0qo' 0---~ = H c o s %  

2 0r OT(./3To 1 1 ) ,  OT 
r =  R2: r  w +  R---~ 0-'~ = 0~o z M a / ~  /~2" Or = 0 ,  

17 

(2.4) 

(2.5) 

(2.6) 

2 0r OT(213To 1 1 ) OT 
r = Rl: r  W + R: 0----~ - "~ \ Ma R~ R1 '" Or = 0 '  

.~ ~3Tor . 0r 1 ~3To OT OT 
r = R2: ~ = -/ t2-"~a/-/slncp'  Or - R2 Ma 0~0' 0----r = Hcos~v. 

Corrections to the free surface can be calculated in the following manner: let h(~o) be the deviation of 
the free surface from r = R1 (or r = R2). For Ca = "TTo/cro ~ 0 and Gr/Ma(/3To) ~ 0, the balance of the 
normal stresses at the inner (outer) boundary then yields 

,SP - 20v { 1 1 (h + h" )}  Gr 
Or = +  - ( T - T * I R  Ca -~i Ma(/3T0)Rsin% R=RI(R2) ,  
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TABLE 1 

Substance Pr 
104 

Glycerin 
104 

Glass  10 4 

Silicon 4- 10 -3  

M& 

3 .  10 2 

1 

10 

Re Gr 
3.10 -2 1.5. 10 -3  

10 -4  0 .5"  I0 -5 

10 -3  0 .5"  10 -6  

2.5. 10 2 0.3- 10 -r  

Pu 

10 -1 

10-1 
10 -2  

~To Gr/Ma ~To/Pr ~2To2/MaPr 
1.5- 10 -2  5" 10 -6  1 .5 .  lO - 6  I0 - m  

0.5- 10 -4  5- 10 -6 0.5. 10 -s 10 -12 

4.5- 10 -s 5. 10 -s 4.5- 10 -9  10 -14 

0.3.10 -r  0.3- 10 - 7  0 . 8 -  10 - s  10 - t 3  

~2Tg/MaPr 

TABLE 2 

Substance Pr 
Glycerin 104 
Silicon 4.10 -3 

l Ma Re 
1 10 -4 
1 2 . 5 . 1 0 2  

Gr Pu /3To Gr/Ma /3To/Pr 
1.5.10 -3 I0 - l  1.5 �9 10 -2 1.5- 10 -3 1.5.10 -6 
2 �9 10 -4 1 2. 10 -4 2. 10 -4 5" 10 -2 

1.8- I0 -s 
10-5 

where ( )' = d/dc2; 6P is the pressure deviation from the equilibrium level 6P0 = 1/(CAR) for 7 = 0 and 
g = 0 .  

3. N u m e r i c a l  I n v e s t i g a t i o n .  We introduce a difference grid r ,  = RI + (n - 1)h (n = 1 , . . . ,  N + 1), 
h = (R2 - R , ) / N ,  ~om = (m - 1)~ (m = 1, . . .  , M  + 1), ~ = 2~r/M, and f,,,~ = f(rn,qom) = fn,m+M. 

The problems formulated for Eqs. (2.1)-(2.3) and (2.4)-(2.6) are investigated numerically by the 
method of reaching a steady state with the use of a longitudinal-transverse finite-difference scheme. For 
Eqs. (2.1) and (2.3) or (2.4) and (2.6), this scheme can be written in the following general form: 

(Uk+l/2 _ Uk)/0.5r  = Ak[A1U k + A2U k+1/2 + Fk+l/2], 

(Uk+ x _ Uk+X/2)/O.5r = A~[A1U k+' + A2U k+a/2 + Ft~+'D]. 

Here U = (~.), U k = U(tk), A1 and A2 are difference operators which approximate, respectively, the following 
differential operators 

1 0  0 1 02 

and Ak is an iteration parameter.  
To solve Eqs. (2.2) or (2.5), at each iteration step tk = kr  (k = 1 , . . . )  we use the iterative scheme 

(r  _ r  = As(Ale s+1/2 + A2r + w'+1/2), 

(r  _ r  = As(AleS+l/2 + A2r + wS+X/2), 

where As is an iteration parameter.  
The method of cyclic sweep is used to find T k+1/2, w k+1/2, and Cs+l, and the so-called method of 

parametric sweep proposed by Voyevodin [6] is used to find w TM, r  In accordance with [6], we write 

tOn,m = Pn,mWN+i,m + Qn,mWl,rn + P~,rn and C,,m = Pn,mWN+l,m + Qn,mWi,m + Rn,m. 
4. R e s u l t s  of  N u m e r i c a l  Ana lys i s .  Calculations are carried out on 21 • 21 and 41 • 41 grids for 

silicon, glycerin, or glass. The inside radius is R1 = 0.1 cm (R1 = 0.5 cm for some variants), and the outside 
radius is R2 = 1.1 cm. Nondimensional parameters are given in Table 1. 

When the capillary number Ca varies within the range of 10 -5 ~< Ca ~< 10 -2 and 7 "~ 10-1 g/( sec2" K) 
(see, for example, [7]), the calculations by the two models give only some quantitative differences in the 
flow characteristics. Figure 1 shows velocity fields and isotherms for glycerin at Pr = 104 and Ma = 3.102 
(Re - -  3.10-2) .  

The calculations have shown that the velocities calculated by the NM are approximately 20% higher 
than the velocities calculated by the OBM (the absolute values are compared). 

The isotherms for glass and especially for silicon are less deformed and are similar in shape to the 
isotherms in the calculations of convective flows in domains with fixed boundaries [4]. Figure 2 shows velocity 
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Fig. 1 

Fig. 2 

( OBM and NM ) ( OBM and NM ) 

(OBMandNM) [ = 0  (OBM) I = O  (NM) 

. , e l l / ~  

�9 ~ u % ~ . . . , . . - ~ d  ! s . ,  . 

I = 0  ~ a n ' ~ 2 : ~ ' : - : : = : : : "  I=1 

Fig. 3 

fields and isotherms for silicon at Pr = 4-10 -3 and Ma = 1 (Re = 2.5.102). The centers of vortices are shifted 
to the right. 

The two-vortex structure of the velocity fields is characteristic of all cases, with some displacement of 
the centers of vortices to the left for glycerin. 

There are some quanti tat ive and qualitative differences between the results obtained by the two models 
at 10 -s  ~< Ca ~ 10 -4 and 7 "" 10-3 and 10 -4 g/(sec 2. K). The parameters for numerical investigation are 
given in Table 2. 

Figure 3 shows the velocity fields at Pr = 104 and Ma = 1 (Re = l0 -4) which were calculated by the 
two models�9 For glycerin, in the case of I = 0 (the outer boundary is free), NM gives a two-vortex structure 
in each of the semicircular domains. For I = 1, either models give qualitatively the same flow pattern with 
only some quantitative differences. 

It should be noted that  the problem of convection stability in domains with free boundaries is of 
considerable interest (see, for example, [8]). The calculation results presented in [8] show that the instability 
can manifest itself at Re and Ma values greater than those of the present paper. 

The author would like to thank researchers of the Institute of Applied Mathematics (University of 
Freiburg, Germany) for putt ing at her disposal the GRAPE program to visualize numerical investigations. 
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